• 奥林巴斯显微镜:荧光显微镜解剖式讲解

    到其他模式基于宏观上的试样的功能,如相位梯度,光的吸收,和双折射的光学显微镜相比,能够仅仅基于荧光发射性能的一个单一的分子种类的分布成像的荧光显微镜。因此,用荧光显微镜,与特定的荧光基团标记的胞内组分的精确位置进行监测,以及其相关联的扩散系数,传输特性,以及与其它生物分子相互作用。此外,在荧光显着的反应,以本地化的环境变量可以调查了pH值,粘度,折射率,离子浓度,膜电位,和在活细胞和组织中的极性溶

    2020-09-04

  • 徕卡显微镜:多波长在荧光显微镜落射照明

    荧光是一个过程,其中已吸收的光(光子)后的物质emitts的辐射的波长(颜色),其中长于吸收光,这个排放停止后立即停止激发。这种现象是荧光显微镜及其应用的基本元素。除此之外,“古典”在光学显微镜下的荧光激发,有可能两个或多个光子具有较长wavengths比发射的激发激光共聚焦扫描显微镜通过现代技术来获得相同的发光效果。 荧光作为autofluorescenc的生物和/或无机结构或所谓的次级荧

    2020-09-04

  • 尼康显微镜:活细胞显微漂移校正焦点

    直到20世纪80年代末,大多数生命科学的研究生物的结构复杂的细节,捕捉各种使用固定和染色标本(实际上,非生物)的细胞学特征的单一快照。然而,在过去的几十年中,在生物科学和医学的研究已经在很大程度上转移了重点调查浩大的时间尺度上,从几毫秒到几小时不等的生命系统的分子,细胞和整个生物体水平上发生的动态过程。过渡到活细胞成像的司机已经先进的显微仪器和更敏感的数码相机的发展,以及新的合成和基因编码的荧光基

    2020-09-04

  • 奥林巴斯显微镜:暗场显微镜的照明

    我们所有的人都相当熟悉的外观和知名度的恒星在一个漆黑的夜晚,尽管他们从地球上的巨大距离。明星可以很容易地观察到夜间,主要是因为微弱的光线和黑色的天空形成了鲜明的对比。但是星辰都闪耀着都晚一天,但他们白天是看不见的,因为压倒性的亮度的太阳“铺天盖地”从星星微弱的光线,使他们看不见。在日全食期间,月亮进入地球和太阳之间的太阳和星星的光挡住了,现在可以看到,即使是白天。总之,对一个黑暗的背景暗淡的恒星光

    2020-09-04

  • 尼康显微镜:EPI-荧光照明光路

    直到最近,荧光照明是一个选项仅适用于配备专门的高数值孔径物镜的研究级复合显微镜。这一技术在立体显微镜的需要不断升级与引进的编码基因和生物特异性荧光蛋白GFP(绿色荧光蛋白)等。体视显微镜的应用GFP观察现在是如此普遍,立体声荧光照明,更经常被称为GFP照明,即使他们可以利用许多其他应用在生命科学和电子制造业。大幼虫,线虫,斑马鱼,卵母细胞和成熟的昆虫标本,如可以方便地选择和操作时,他们GFP标记的

    2020-09-04

  • 奥林巴斯显微镜:什么是荧光?

    当试样,活的或非活的,有机或无机,吸收和后来重新焕发灯,这个过程描述为光致发光。如果光的发射,激发能量(光)后,便不再持续几秒钟,该现象被称为磷光。荧光,在另一方面,描述了光发射的激发光的吸收仅在继续。激发光的吸收和再辐射光荧光发射的时间间隔是异常持续时间短,一般不超过百万分之一秒。荧光的现象是19世纪所产生。英国科学家Sir George G. Stokes首先观察矿物萤石具有荧光,用紫外光照射

    2020-09-04

  • 徕卡显微镜:荧光显微镜介绍

    荧光显微镜的光学显微镜是一种特殊形式。它使用目标波长的光激发后发射光的荧光染料的能力。蛋白质的利益可以通过抗体染色或荧光蛋白标记的荧光染料标记的。它允许一个单一分子物种的分布的测定,其量和其在细胞内的本地化。此外,可以进行共定位和相互作用的研究,观察到的离子浓度,使用可逆地结合染料,如Ca 2 +和呋喃-2和内吞作用和胞外分泌的细胞过程,如观察。今天,它甚至可以将图象分的帮助下,荧光显微镜的分辨率

    2020-09-04

  • 声光学在真正的共焦光谱徕卡显微镜系统

    最显着的特征荧光照明(激发)和检测(排放)的颜色,称为斯托克斯位移之间的位移。因此,期望进行筛选的激发和发射的特定颜色波段。也有必要区分激发,从入射的光显微镜中的排放量,这是一个标准荧光应用。在过去,通常是进行过滤器和分束与平面光学元件,灰度或彩色滤光片和反射镜。虽然计划种类繁多的光学元件是可用的,他们的限制是固定的规范和交换缓慢。尝试使用不同的角度或梯度涂层作为一种手段微调并不能证明是可行的。一

    2020-09-04

上一页1234567...16下一页 转至第

客服热线

工作时间9:00-17:00
021-51602084
电话咨询
邮件咨询
在线咨询
QQ客服
XML 地图